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Computer simulation of ion conductance in membrane channels
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We present a method for calculation of electric forces in biological channels, which facilitates microscopic
modeling of ion transport in channels using computer simulation. The method is based on solving Poisson’s
equation on a grid and storing the electric potential and field for various configurations in a table. During
simulations, the potential and field at any point are calculated by interpolating between table entries rather than
solving Poisson’s equation. This speeds up computer simulations by orders of magnitude with minimal loss in
accuracy. With this method, one can run simulations long enough to determine the channel conductance, which
can be compared directly with experimental data. Since conductance is the most important observable quantity
in description of membrane channels, this method will be very useful in future simulation studies of channels.
@S1063-651X~98!11209-6#

PACS number~s!: 87.22.Fy
i
ys

r
g
te

th
he
tio
ic
a-
tw
n

se
id
ith
se
y

a
or
u-
ro
fo
e
tr

th
a

ve

n
b

Of
re-

orus
d-
b-
the
ith
to

ng

to-
l a
s.
uc-
s a
pu-

ro-
hat
ers.
n’s
ns
les.
re

We
t is
tric
is

ugh
we

lar
uce

a
is
I. INTRODUCTION

Study of ion transport in biological membrane channels
one of the most challenging problems in theoretical bioph
ics @1#. The dimensions of channels~a few angstroms in the
narrow region! and the number of ions involved~a few at
most at a given time! are such that macroscopic methods a
not expected to provide a physical basis for understandin
ion transport in channels. On the other hand, a comple
microscopic model based on molecular dynamics~MD!
simulation of all the ions and water molecules in and in
vicinity of the channel is not feasible either. Even on t
fastest supercomputer currently available, such a simula
would take years of computer time. Brownian dynam
~BD!, where ionic motion is treated microscopically but w
ter as bulk, offers a workable compromise between the
extremes and could provide useful insights into the ion tra
port problem in membrane channels@2#.

Past theoretical studies of ion channels have focu
mostly on artificial membrane channels such as gramic
A, which can be modeled as a narrow cylindirical tube w
radius 2 Å. Due to their simplicity and small volume, the
channels have been studied in great detail using a variet
macroscopic@1# and microscopic theories@2,3#. In contrast,
actual biological channels have more complicated shapes
much larger volumes and therefore their modeling is m
involved. Typically, biological channels have wide vestib
lar openings and follow a catenary shape down to a nar
neck region@4#. This geometry poses a serious problem
calculation of electric forces acting on an ion in the chann
Because proteins forming the channels have a low dielec
constant~2! compared to water~80! in which ions move, the
channel boundary plays a significant role in determining
electric forces. While numerical solution of Poisson’s equ
tion for arbitrary channel boundaries can be readily achie
using iterative techniques@5,6#, this is too time consuming to
be of any practical use in computer simulations. The alter
tive, analytical solutions of Poisson’s equation can
PRE 581063-651X/98/58~3!/3654~8!/$15.00
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achieved only in a limited number of coordinate systems.
these, the toroidal coordinates come closest to forming a
alistic channel, that is, a constant surface generates a t
shape@7#. Though the curvature of an actual channel boun
ary is opposite to that of a torus, the potential profiles o
tained for the two boundaries are quite similar and thus
torus could serve as a useful model for ion channels. W
the speed gained from analytical solutions, it is possible
carry out BD simulations of ions in vestibular channels lo
enough to learn about their dynamical behavior@8#. Unfor-
tunately, the analytical solutions of Poisson’s equation in
roidal coordinates are rather complicated, requiring stil
substantial numerical effort for calculation of electric force
Thus the gain in speed is not sufficient to obtain the cond
tance of a model channel. As the conductance provide
direct link between simulations and experiments, its com
tation is essential for purposes of model building.

Rather than waiting for even faster computers, we p
pose a different strategy for calculation of electric forces t
exploits the huge storage capacity of supercomput
Namely, for a given channel boundary, we solve Poisso
equation on a grid of points for all required configuratio
and store the resulting electric potentials and fields in tab
During simulations, the potential and field at any point a
calculated by interpolating between the table entries.
show that, using a reasonable number of grid points, i
possible to obtain very accurate estimates of the elec
forces. Most importantly, with the speed gained with th
method, one can run the computer simulations long eno
to determine the conductance of a model channel. Here
present the results of BD simulations of ions in a vestibu
channel and discuss the insights these simulations introd
into the ion transport problem.

II. FORMALISM

A. Model of ion channels

Ion channels in biological membranes are formed by
group of four to five proteins, but their precise structure
3654 © 1998 The American Physical Society
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not well known yet. Electron microscope pictures of the a
tylcholine channel reveal a catenary shape narrowing do
to a 4–5 Å radius in the neck region@4#. In modeling the
channel boundary, we follow this shape closely~see Fig. 1!.
For purposes of simulation of ion transport, we place on e
side of the vestibules a cylindrical reservoir with a radius
30 Å and a variable height. The number of ions in ea
reservoir is fixed for convenience~13 of each species! and
the height of the reservoir is adjusted to obtain a des
ionic concentration. The ionic concentration in the volum
composed of the channel vestibules and the reservoir
300 mM , corresponding to a height of 22 Å. This conce
tration is about twice that of the physiological concentrat
and is preferred in the simulations to obtain a better statis
The cylindrical reservoir has a glass boundary in that an
moving out of the boundary is reflected back into the res
voir.

An important question in the calculation of the electr
magnetic forces is what dielectric constant to use for wa
inside the channel. Molecular dynamics studies of wate
cavities@9# and narrow pores@10# suggest that the dielectri
constant is substantially reduced compared to the bulk va
This reduction inew clearly depends on the geometry, and
the absence of such a microscopic input for the caten
channel, we prefer to use the bulk value in the present si
lations. We note that a smaller value ofew will lead to a
larger image force on an ion and therefore will require
larger dipole strength in the channel neck to cancel this
pulsive force and allow permeation of ions~see below!.

In earlier studies, charge groups in the protein walls
found to play an important role in ion permeation. To inve
tigate such effects, we place a set of four dipoles inside
protein boundary atz55 Å and another set of four dipole
at z525 Å. Their orientations are perpendicular to thez
axis. For each dipole, the negative pole, placed at 1 Å ins
the water-protein boundary, is separated from the posi
pole by 5 Å. Thus, if 5/16 of an elementary charge is plac
on each pole, then the total moments of four such dipo
would be 100310230 C m. The same configuration of d

FIG. 1. The model ion channel with two catenary vestibules
generated by rotating the closed curves in the figure along the s
metricz axis by 180°. The vestibules at each side of the membr
are constructed usingz5a cosh (x/a) with a54.87 Å. The radius
of the entrance of the vestibule is 13 Å and the cylindrical tra
membrane segment has a radius of 4 Å. The dimensions of
cylindrical reservoirs are 30 Å in radius and 22 Å in height.
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poles is used in all the simulations, giving rise to an attr
tive potential for cations and a repulsive potential for anio
in the channel. These fixed charges represent the cha
side chains thought to form a ring around the entrance of
constricted region@11# and their nearby counter charges. F
convenience, we adjust the amount of charge rather than
number or positions of the charges, but in reality the s
chains would have one electron charge each. The memb
potential of 100 mV is represented by an applied elec
field of strength 107 V m21. This is a simplification we use
for convenience. The actual potential and field across
channel are severely distorted by the dielectric boundary@7#.

The treatment of water as a continuum is presumabl
reasonable approximation in the vestibule of the channel,
it is not expected to work in the narrow neck region. Fro
the point of view of ion transport, the most important effe
that cannot be handled by the BD simulations is the de
dration process necessary for an ion to squeeze into the
region. The loss of water molecules from the first or seco
hydration shell of an ion will lead to an effective potenti
barrier that the ion needs to surmount. This intuitive arg
ment is supported by detailed MD studies of the gramici
pore, which reveal the presence of such an energy barrie
the pore mouth@3#. The temperature dependence of condu
tance measured in biological ion channels provides ad
tional evidence for an energy barrier: The conductivi
temperature curves in channels are always steeper than
in the bulk electrolyte solutions, which can be explained
one invokes a dynamic energy barrier in the neck reg
@12#. We model this effect in the BD simulations by erectin
potential barriers of heightVB on either side of the channel a
z5610 Å. Only those ions that have thermal energiesE
.VB are allowed in, otherwise they are elastically scatte
from the barrier. The probability of transmission follow
from the Boltzmann distribution as

P~E.VB!5
2

Ap
~kT!23/2E

VB

`

e2E/kTAE dE, ~1!

which is given by the incompleteG function

P~E.VB!5
2

Ap
GS 3

2
,a D 5

2

Ap
exp ~2a!Aa

3S 11
1

2a
2

1

4a2 1
1

8a3 2••• D , ~2!

where a5VB /kT. Ideally, this potential barrier should b
calculated from the MD simulations and incorporated in
the BD algorithm. However, MD studies for general chann
shapes are still in their infancy and it is not clear whether o
can represent the complex interactions in the neck reg
with an effective potential acting on the ions only. In th
absence of such information, we have used a step barrie
simplicity, but caution that a description of properties su
as selectivity may ultimately require switching from BD
MD in the vicinity of the neck region.
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B. Brownian dynamics

The trajectories of ions drifting across the channel un
the influence of a driving force are followed using BD sim
lations. The motion of thei th ion with massmi and chargeqi
is governed by the Langevin equation

mi

dvi

dt
52mig ivi1FR~ t !1Fi . ~3!

The first term on the right-hand side of Eq.~3! corresponds
to an average frictional force with the friction coefficie
given bymig i , where 1/g i is the relaxation time constant o
the system. The second termFR(t) represents the random
part of the collisions and rapidly fluctuates around a z
mean. The frictional and random forces in Eq.~3!, together
describing the effects of collisions with the surrounding w
ter molecules, are connected through the fluctuati
dissipation theorem@13#, which relates the friction coeffi-
cient to the autocorrelation function of the random force

mig i5
1

2kTE2`

`

^FRu~0!FRu~ t !&dt, u5x,y,z, ~4!

wherek andT are the Boltzmann constant and temperat
in degrees Kelvin, respectively. Here the angular brack
denote ensemble averages. Finally,Fi5qiEi in Eq. ~3! de-
notes the total electric force acting on the ion. The elec
field Ei arises from~i! other ions,~ii ! fixed charges in the
protein, ~iii ! membrane potential, and~iv! induced surface
charges on the water-protein boundary. It is computed
solving Poisson’s equation and will be further discussed
Sec. II C.

The solution of the Langevin equation is implement
using the third-order BD algorithm proposed by van Gu
steren and Berendsen@14,15#. The main steps of the solutio
needed in this implementation are given in the Append
Unlike many other BD algorithms, the time stepsDt in this
algorithm are not restricted by the conditionDt!g21. For
typical ions ~Na or K!, this condition would have require
Dt;1 fs, thus making the long-time simulations needed
obtain the macroscopic current virtually impossible. T
physical constraints of the ion channel, on the other ha
impose a much more relaxed time step. For example, ke
ing the rate of change of the electric field in the channel t
few percent requiresDt5100 fs, which is used in the fol
lowing BD simulations. The basic computational steps of
algorithm are as follows.

~i! Compute the electric forceF(tn)5qiEi acting on the
ion i at time tn from the lookup table and calculate its d
rivative @F(tn)2F(tn21)#/Dt.

~ii ! Compute a net stochastic force impinging on an
over the time period ofDt from a sampled value ofFR(t).

~iii ! Determine the position of each ion at timetn1Dt and
its velocity at timetn by substitutingF(tn), its derivative
Ḟ(tn), andFR(t) into the solutions of the Langevin equatio
Eqs.~A6! and ~A7!.

~iv! Repeat the above steps for all ions in the system fo
desired number of simulation steps.
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The BD program used in the simulations is written
FORTRAN, vectorized, and executed on a supercompu
~Fujitsu VPP-300!. A typical simulation is run for 2 000 000
steps, which is repeated 5 times. With 52 ions in the res
voirs, the CPU time of a supercomputer needed to comp
one simulation period of 0.1ms (106 time steps in 100 fs!
is about 2 h. The current is determined from the total num
of ions crossing the transmembrane segment. To ensure
the desired intracellular and extracellular ion concentrati
are maintained throughout the simulation, a stocha
boundary is applied. When an ion crosses the transmemb
segment, an ion of the same species from the same sid
transplanted on the opposite side.

The following physical constants are employed in the B
simulations: dielectric constantsewater580 and eprot52;
massesmNa53.8310226 kg andmCl55.9310226 kg; dif-
fusion coefficients DNa51.3331029 m2 s21 and DCl
52.0331029 m2 s21; relaxation time constantsg21, gNa
58.131013 s21 and gCl53.431013 s21; ion radii r Na
50.95 Å and r Cl51.81 Å; and room temperatureTr
5298 K.

C. Lookup tables for electric forces

The BD algorithm requires calculation of electric forc
acting on ions at each time step. Given the positions of io
this can be achieved by solving Poisson’s equation in
appropriate boundary. However, as emphasized in the In
duction, this direct approach is computationally too expe
sive to be useful in long-time simulations necessary for
calculation of conductance. Here we adapt an alterna
method where the electric field and potential are preca
lated on a grid of points for various configurations and t
results are stored in a number of lookup tables. During sim
lations, the field and potential at desired points are rec
structed by interpolating between the table entries. Co
pared to the analytical solution of Poisson’s equation
toroidal coordinates, the lookup method is two orders
magnitude faster. The lookup method has the additional
vantage that one is not restricted to a toroidal channel.
merical solutions of Poisson’s equation for more realis
channel shapes~e.g., catenary! can be as easily stored i
tables as is done in the present work.

For calculational purposes, it is convenient to break
total electric potentialVi experienced by an ioni into four
pieces

Vi5VS,i1VX,i1(
j Þ i

VI ,i j 1(
j Þ i

VC,i j , ~5!

where VS,i is the self-potential due to the surface charg
induced by the ioni on the channel boundary andVX,i is the
external potential due to the applied field, fixed charges
the protein wall, and charges induced by these. The next
terms in Eq.~5! take the influence of other ions into accoun
namely,VI ,i j is the image potential due to the charges
duced by the ionj andVC,i j is the Coulomb potential due to
the ion j , which is computed directly from
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VC,i j 5
1

4pe0

qj

ewur i2r j u
, ~6!

where r i and r j are the positions of the ions. The electr
field experienced by the ion is decomposed in the same

Ei5ES,i1EX,i1(
j Þ i

EI ,i j 1(
j Þ i

EC,i j , ~7!

each field component being defined as in the potential~5!.
The first three components in Eqs.~5! and ~7! depend on

the boundary and, in general, they are determined from
merical solutions of Poisson’s equation~see Refs.@5,6# for
iterative techniques of solution!. Each of these components
calculated for a grid of positions and stored in separ
tables. To allow rapid look up, the precalculated values m
be on an evenly spaced grid. Because the use of a rectili
grid would result in many wasted points and a jagged e
near the pore boundary, we use a system of generalized
lindrical coordinates in constructing the look up tables.
terms of the cylindrical coordinates (r ,u,z)

r 5Ax21y2, u5tan21~y/x!, z5z, ~8!

the generalized coordinates (r,u,z) are defined as

r~r ,z!5r /r max~z!, u5u, z~z!5~z2zmin!/~zmax2zmin!,

~9!

wherer max(z) is the limiting radius of the pore andzmax and
zmin are the maximum and minimumz coordinates for the
system. The coordinatesz and r are normalized and cove
the range@0,1#. For u, we use the range@2p,p# for con-
venience~see below!. The limiting radiusr max(z) is offset
from the pore wall by the radius of the smallest ion in t
simulation, which defines the closest possible approach
an ion to the pore wall. Besides providing a smooth ed
near the boundary, the generalized coordinates also allow
cylindrical symmetry of the channel to be exploited. For e
ample, theu coordinate is redundant in the calculation of t
self-potentialVS,i , therefore it is stored in a two-dimension
table V2D(rm ,zn). Similarly, the image potentialVI ,i j de-
pends on the relative angle between the ionsi and j and it is
stored in a five-dimensional tableV5D(rm ,zn ,rm8 ,zn8 ,uk).
Due to reflection symmetry,uk and 2uk lead to the same
image potential. Henceuk in V5D covers only the range
@0,p#. The fixed charges do not possess any particular s
metry, so the external potentialVX,i is stored in a full three-
dimensional tableV3D(rm ,zn ,uk). Hereuk covers the whole
range@2p,p#.

The electric field is stored in the same way as the pot
tial, except that three values are required for each point
table, one for each Cartesian component of the field.
while the field tables are indexed by the generalized coo
nates, their contents are stored as Cartesian coordinates
tables E2D(rm ,zn), E3D(rm ,zn ,uk), and E5D(rm ,zn ,
rm8 ,zn8 ,uk). Note that, in principle, these results could
ay
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combined and stored in the same table. However, sepa
tables are more flexible and assist in minimizing the inter
lation error, and therefore preferred.

During the simulations, first the positions of ions at
given time step are converted to the generalized coordina
The values of the electric potential and field at the position
the ion are then extracted from the tables by multidime
sional linear interpolation, making use of a simple algorith
that generalizes easily to dimensions greater than 2@16#. Be-
cause the grid points are evenly spaced in the general
coordinates, the appropriate indices can be found by divis
rather than by a time consuming binary search. For an ioi
with chargeqi at the positionr i5(r i ,z i ,u i) and another ion
with chargeqj at r j5(r j ,z j ,u i), the potentials are given by

VS,i5
qi

e
V2D~r i ,z i !,

VX,i5V3D~r i ,z i ,u i !, ~10!

VI ,i j 5
qj

e
V5D~r i ,z i ,r j ,z j ,uu i2u j u!,

where V2D(r i ,z i), V3D(r i ,z i ,u i), and V5D(r i ,z i ,r j ,
z j ,uu i2u j u) are obtained by applying the interpolation alg
rithm to the two-dimensional self-potential table, the thre
dimensional external potential table, and the fiv
dimensional image potential table, respectively. The s
potential and image potential tables are constructed assum
a positive unit charge as the source, so the results are
caled to the actual source charge after lookup.

The symmetries used to reduce the size of the tables
quire that the recovered electric field be rotated and reflec
appropriately so that it corresponds to the simulation’s C
tesian axes. The fields are extracted from the interpola
table values as

ES,i5
qi

e
Rz~u i !E2D~r i ,z i !,

EX,i5E3D~r i ,z i ,u i !, ~11!

EI ,i j 5
qj

e
Ry~u i ,u j !Rz~u i !E5D~r i ,z i ,r j ,z j ,uu i2u j u!,

whereRz(u i) denotes the rotation matrix around thez axis
by an angleu i andRy(u i ,u j ) is a reflection operator on th
x-z plane defined by

Ry~u i ,u j !5H D~1,1,1! if p.u j2u i.0

D~1,21,1! if 0 .u j2u i.2p.
~12!

HereD denotes a diagonal matrix with entries as indicated
the arguments.

Once the field and potential are known, the force a
potential energy on ioni can be calculated from

Fi5qiEi , ~13!

Ui5qi~Vi2
1
2 VS,i !. ~14!
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Note that only half the self-potential is used when calculat
the potential energy. The reason for this can be seen
imagining the charge on the ion being built up with infin
tesimal pieces being brought in from infinity. While the e
ternal potential remains the same during this process,
self-potential increases from zero to its full value as
charge is built up. This involves the integral*0

qiq dq

5qi
2/2, which explains the factor of one-half.

To test the accuracy of the lookup method, we comp
the interpolation results for potential energy and force w
those obtained from the analytical solution of Poisso
equation for a toroidal channel in a variety of situations. T
channel boundary is generated by rotating a circle in thex-z
plane around thez axis. The radius of the circle is 40 Å an
its center is located atx544 Å, z50. We refer to Ref.@7#
for details of the analytical solution. The results of elect
potential and each Cartesian component of the field for
self-, external, and image parts are stored in tables with
mensions 37397, 103171340, and 73119373119
314, respectively. These dimensions are found after an
timization of the lookup program for the toroidal chann
The catenary channel described in Fig. 1 has a similar sh
and lookup tables with the same dimensions are used in
BD simulations in Sec. III.

Among the three potential~or field! parts, the self-
potential displays larger errors compared to the image
external potentials. Therefore, in the following tests, we
cus on the potential energy and the force on a single ion
toroidal channel that has no other fixed charges or exte
fields. In Fig. 2 we show the potential energy and thez
component of the force for a single ion moving parallel
the central axis but offset from it by 3 Å. Since thez com-
ponent of the force provides the driving force in the B
simulations, only that one is shown in this figure. The so
lines are calculated from the analytical method and
circles by interpolating from the precalculated values sto
in the lookup tables. The spacing between points in
lookup table is 1.77 Å in thez direction and the circles ar
at the midpoints of these intervals, where the maximum
terpolation error is expected to occur. The radius of the ch
nel varies withz and hence the spacing between points in
r direction changes. Therefore, the circles are not necess
located at the midpoints of the interpolation intervals in t
radial direction. The relative error for the potential and for
are not shown in a separate graph because they are less
1% for all the points in Fig. 2. Almost identical results a
obtained for other ion trajectories parallel to the central a
but with different radial offsets. In Fig. 3 we show a simil
plot of the potential energy and the radial component of
force in thez50 plane as the ion is moved radially from th
central axis towards the boundary. Note that the closest
proach is limited by the size of the ion. Here the circl
correspond to the midpoints of the interpolation intervals
both the z and the radial directions. The relative error
again less than 1% for all the points in Fig. 3. In Fig. 4 w
show another comparison for the potential energy and
radial component of the force on a radial trajectory in thez
530 Å plane. Again the circles are chosen at the midpo
of the interpolation intervals. The relative error remains le
than 1% for the potential, but rises to a few percent for
g
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force for points near the boundary in Fig. 4. The agreem
between the analytic and lookup methods evident in F
2–4 indicates that the interpolation error is negligible for t
potential energy and the force in the most important parts
the channel.

Tests carried out on a catenary channel yield a sim
agreement between the lookup method and the nume
solution results. The relative error is slightly larger when
ion approaches the vestibular wall in the catenary chan
but this is not of great concern in simulations since ions te
to stay away from the water-protein boundary.

The system of generalized coordinates we use has a w
ness at the entrance to the pore, where the boundary
horizontally, perpendicular to thez axis. The radius suddenly
jumps from that of the reservoir to that of the pore entran
This results in spurious interpolation between points near
channel’s top surface and points in the pore entrance. Er
in the potential near the channel’s top surface are unlikely
affect the results of simulations. Errors in the potential in t
pore entrance are of greater concern. However, the ma
tude of the force is rather small in this region and we ha

FIG. 2. Comparison of the potential energy and thez component
of force, obtained from the lookup tables by interpolation~circles!,
with the analytical solutions~lines! for a toroidal channel. An ion is
moved along the trajectory that is parallel to the central axis bu
offset from it by 3 Å, as indicated by the arrow in the inset. T
position of each circle in thez direction is located at the midpoin
between two adjacent points stored in the lookup table.
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checked in control runs that it has no effect on the simu
tions. An improved system of generalized coordinates t
avoids this problem may be desirable in other application
this method.

The use of lookup tables is practical despite the la
number of points at which the field needs to be calcula
because the time used by the algorithms depends much
on the number of solutions needed rather than the numbe
points per solution. Both the iterative and analytical alg
rithms can easily generate the field at multiple points aris
from many charges at given positions~which we call one
solution!. On the VPP, a solution for 50 ions and 16 fixe
charges takes 0.3 s~of CPU time! by the analytical algo-
rithm, 6 s by theiterative algorithm, but only 0.005 s by th
lookup table method. A BD simulation of 23106 steps
would thus take~including overheads! 170 h by the analyti-
cal algorithm, 140 d by the iterative method, and 4 h by the
lookup table method. The filling of the tables takes only 1
using the analytical solution and 10 h using the iterat
solution. To give an example, generating a five-dimensio
lookup table using the iterative method~which is the most
time consuming! requires only 833 solutions, each for
single ion and at 12 000 points. Each solution takes 21 s
the total time required is about 5 h. Another advantage of
method is that once the tables are constructed for a g

FIG. 3. Same as Fig. 2, but for a radial trajectory in thez50
plane and the radial component of the force. The lookup res
~circles! are calculated at the midpoints of the interpolation int
vals in both thez and the radial directions.
-
at
f

e
d
ore
of
-
g

e
al

nd
e
n

geometry, they can be used in many simulations study
different aspects of channel conductance.

III. BROWNIAN DYNAMICS SIMULATIONS
OF CONDUCTANCE

Previously, we used the BD simulations to study trajec
ries of ions in a toroidal channel@8#. The main conclusions
of that work are~i! the repulsive self-potential of an ion i
strong enough to make the channel impermeable even in
presence of an applied electric potential of 100 mV and~ii !
dipoles of a favorable orientation are required to cancel
repulsive force and make the channel permeable. The us
lookup tables allows much longer simulation times, whi
we exploit here to study the conductance of the model c
enary channel described in Sec. II A. In particular, we co
sider the effect of the potential barrier on the channel c
ductance. In Fig. 5 we show the current-voltage relations
obtained in five different simulations as the barrier heig
takes the valuesVB50, 3, 4, 5, and 6kTr . The results for
VB51 and 2 kTr are not shown to avoid cluttering (1kTr
overlaps with 0 kTr and 2 kTr is slightly suppressed with
respect to 0kTr but retains its linear character!. The out-
standing feature of these curves is the increasing devia
from the linear Ohm’s law as the barrier height increas
The curvature mostly occurs in the regioneV;VB and one

ts
-

FIG. 4. Same as Fig. 3 but for a radial trajectory in thez
530 Å plane~see the inset!.
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recovers the linearI -V curves at the asymptotic regions a
beit with different conductances. Intuitively, the relative su
pression of the current at low voltages follows from the fa
that the potential barrier is most effective when the drivi
force is small. These observations suggest a modificatio
Ohm’s law with a Po¨schl-Teller function@17#

I 5
gV

11b/cosh~eV/VB!
, ~15!

whereg is the limiting conductance andb is a dimensionless
constant. WheneV@VB , the denominator goes to 1 and on
recovers Ohm’s law. ForeV!VB , Eq. ~15! is again linear
but with a conductance reduced tog/(11b.) The nonlin-
earities in theI -V curves become apparent only wheneV
;VB , which corresponds to the regionV'1002200 mV
for the above barriers. The lines in Fig. 5 are obtained
fitting Eq. ~15! to the I -V data. The fit values of the param
etersg and b are given in Table I. While Eq.~15! does a
good job of describing the data for a given barrier, variat
of the fit parameters withVB indicates that it is too simplistic
to give a consistent picture for all the data in Fig. 5. F

FIG. 5. Evolution of the current-voltage relationships with t
barrier height for symmetrical solutions. Current flowing across
channel is measured at different applied potentials. The data p
are fitted with a modified Ohm law, which takes the barrier in
account@see Eq.~15!#.

TABLE I. Values of the parametersg and b in Eq. ~15! ob-
tained from fits to theI -V data in Fig. 5.

VB(kTr) g ~pS! b

0 23264
3 15964 0.6360.18
4 15167 2.4460.41
5 130611 3.7460.68
6 138680 9.1267.02
-
t

of

y

n

r

example, the rapid change inb implies a faster suppressio
of the current with increasing barrier than envisioned in E
~15!. We have not attempted a global fit of the data since
appears unlikely that the complexities of the BD simulatio
could be summarized in a simple, single formula.

For symmetrical solutions, the current-voltage relatio
ship obtained from patch-clamp recordings is usually Ohm
~Here we are not concerned with nonlinearities that ar
from rectification.! These measurements are typically carri
out with the applied voltage in the biological range 0–1
mV. The BD simulations presented above suggest that
current-voltage relations would deviate from straight lines
there are potential barriers in the channel, but the devia
would be apparent only at higher values of the applied v
age ~100–200 mV!. There are already some experimen
indications for a deviation from Ohm’s law@18#. It would be
worthwhile to pursue this question further in future patc
clamp experiments where the applied voltage is pushed
yond the usual range. If such deviations do occur, fitting
data points with Eq.~15! will provide an estimate of the
barrier height present in the channel.

IV. CONCLUSIONS

Electric forces play an important role in ion transpo
across membrane channels and therefore they form an e
tial part of any model channel. In this paper we propose
lookup method for calculation of electric forces, which e
ables computer simulation studies of ion conductance to
carried out for biological channels with vestibular shapes.
demonstrated in Sec. II, the method is fast, accurate,
allows arbitrary shapes of channels. As an application of
method, we have performed Brownian dynamics simulatio
of ion conductance in a model catenary channel. The res
highlight the role played by potential barriers in channel d
namics and how they could explain deviations in curre
voltage relations from Ohm’s law. Conversely, the obser
tion of nonlinearities in patch-clamp experiments would sh
light on the presence and nature of potential barriers in b
logical channels. Such effects should be actively pursue
future patch-clamp experiments where the applied voltag
pushed beyond the usual biological range.

APPENDIX: SOLUTION OF LANGEVIN EQUATION

Here we give the basic steps in the solution of the Lan
vin equation that are implemented in the BD algorithm
van Gunsteren and Berendsen@15#. Using the the integrating
factor egt, the Langevin equation~3! can be integrated from
an initial time tn to t to obtain for the velocity

v~ t ! egt2v~ tn! egtn5
1

mE
tn

t

@F~ t8!1FR~ t8!# egt8dt8.

~A1!

Here and in the following the indices referring to ions a
Cartesian components are omitted for convenience. The
tegral over the random force in Eq.~A1! can be obtained
using the stochastic properties ofFR(t). For the electric
force, we Taylor expandF(t) aroundtn ,

F~ t !5F~ tn!1Ḟ~ tn!~ t2tn!1•••, ~A2!

e
ts
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whereḞ(tn) denotes the derivativeF(t) at t5tn . Here the
first-order expansion ofF(t) is sufficient as the positions in
the BD algorithm are exact to third order. Substituting E
~A2! in Eq. ~A1! and integrating the force terms gives

v~ t !5v~ tn! e2g~ t2tn!1
F~ tn!

mg
~12e2g~ t2tn!!

1
Ḟ~ tn!

mg2
@g~ t2tn!211e2g~ t2tn!#

1
e2gt

m E
tn

t

FR~ t8! egt8dt8. ~A3!

To find the position after a time stepDt, we need to integrate
Eq. ~A3! once more fromtn to tn1Dt. Integration of all the
terms in Eq.~A3! is straightforward, except the last on
which can be done by parts usingdu5e2gt and v as the
integral ofFR ,

E
tn

tn1Dte2gt

m E
tn

t

FR~ t8! egt8dt8

5
1

mgEtn

tn1Dt

@12eg~ t2tn2Dt !#FR~ t !dt[Xn~Dt !, ~A4!

where we have defined the random variableXn(Dt), which
has the same stochastic properties asFR(t). We refer to Ref.
@15# for details of howXn(Dt) is implemented in the BD
algorithm. Using Eq.~A4!, the position at timetn115tn
1Dt is found to be
o

t.

J

.

.

x~ tn11!5x~ tn!1
v~ tn!

g
~12e2t!1

F~ tn!

mg2 ~t211e2t!

1
Ḟ~ tn!

mg3 S t2

2
2t112e2tD1Xn~Dt !. ~A5!

Here t5gDt is a dimensionless parameter that signifies
diffusive regime whent@1 or a microscopic one whent
!1. A more convenient form forx(tn11), which does not
involve the velocity, can be obtained by addinge2t times
x(tn21)[x(tn2Dt) to Eq. ~A5!,

x~ tn11!5x~ tn!~11e2t!2x~ tn21!e2t1
F~ tn!

mg2 t~12e2t!

1
Ḟ~ tn!

mg3 S t2

2
~11e2t!2t~12e2t! D1Xn~Dt !

2Xn~2Dt !e2t. ~A6!

Similarly, a simple expression for the velocity follows b
subtractingx(tn21) from Eq. ~A5!,

v~ tn!5
2g

sinh tFx~ tn11!2x~ tn21!12S F~ tn!

mg2 2
Ḟ~ tn!

mg3 D
3~sinh t2t!2Xn~Dt !1Xn~2Dt !G . ~A7!

Equations~A6! and~A7! provide the basic input for the BD
algorithm used in the simulations.
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