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Computer simulation of ion conductance in membrane channels
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We present a method for calculation of electric forces in biological channels, which facilitates microscopic
modeling of ion transport in channels using computer simulation. The method is based on solving Poisson’s
equation on a grid and storing the electric potential and field for various configurations in a table. During
simulations, the potential and field at any point are calculated by interpolating between table entries rather than
solving Poisson’s equation. This speeds up computer simulations by orders of magnitude with minimal loss in
accuracy. With this method, one can run simulations long enough to determine the channel conductance, which
can be compared directly with experimental data. Since conductance is the most important observable quantity
in description of membrane channels, this method will be very useful in future simulation studies of channels.
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PACS numbes): 87.22.Fy

[. INTRODUCTION achieved only in a limited number of coordinate systems. Of

these, the toroidal coordinates come closest to forming a re-

Study of ion transport in biological membrane channels iflistic channel, that is, a constant surface generates a torus
one of the most challenging problems in theoretical biophysShap€7]. Though the curvature of an actual channel bound-
ics [1]. The dimensions of channela few angstroms in the &7 IS opposite to that of a torus, the potential profiles ob-

narrow regiof and the number of ions involveth few at tained for the two boundaries are quite similar and thus the

most at a given timeare such that macroscopic methods aretorus could serve as a useful model for ion channels. With

; . . .~ “the speed gained from analytical solutions, it is possible to
not expected to provide a physical basis for understanding g arry out BD simulations of ions in vestibular channels long

io_n transport in channels. On the other hand, a Completellénough to learn about their dynamical beha@} Unfor-
microscopic model based on molecular dynami®D)  nately, the analytical solutions of Poisson’s equation in to-
simulation of all the ions and water molecules in and in theysiga| coordinates are rather complicated, requiring still a
vicinity of the channel is not feasible either. Even on thegpstantial numerical effort for calculation of electric forces.
fastest supercomputer currently available, such a simulatiofthys the gain in speed is not sufficient to obtain the conduc-
would take years of computer time. Brownian dynamicstance of a model channel. As the conductance provides a
(BD), where ionic motion is treated microscopically but wa- girect link between simulations and experiments, its compu-
ter as bulk, offers a workable compromise between the tw@stion is essential for purposes of model building.
extremes and could provide useful insights into the ion trans- Rather than waiting for even faster computers, we pro-
port problem in membrane chann¢. pose a different strategy for calculation of electric forces that
Past theoretical studies of ion channels have focusegprits the huge storage capacity of supercomputers.
mostly on artificial membrane channels such as gramicidirName|y, for a given channel boundary, we solve Poisson’s
A, which can be modeled as a narrow cylindirical tube withequation on a grid of points for all required configurations
radius 2 A. Due to their simplicity and small volume, theseand store the resulting electric potentials and fields in tables.
channels have been studied in great detail using a variety ¢huring simulations, the potential and field at any point are
macroscopid 1] and microscopic theorig2,3]. In contrast,  calculated by interpolating between the table entries. We
actual biological channels have more complicated shapes arghow that, using a reasonable number of grid points, it is
much larger volumes and therefore their modeling is morg)ossible to obtain very accurate estimates of the electric
involved. Typically, biological channels have wide vestibu-forces. Most importantly, with the speed gained with this
lar openings and follow a catenary shape down to a narrowhethod, one can run the computer simulations long enough
neck region[4]. This geometry poses a serious problem fortg determine the conductance of a model channel. Here we
calculation of electric forces acting on an ion in the channelpresent the results of BD simulations of ions in a vestibular

Because proteins forming the channels have a low dielectrighannel and discuss the insights these simulations introduce
constant(2) compared to wate(80) in which ions move, the into the ion transport problem.

channel boundary plays a significant role in determining the

electric forces. While numerical solution of Poisson’s equa- Il. FORMALISM
tion for arbitrary channel boundaries can be readily achieved
using iterative techniqud$,6], this is too time consuming to
be of any practical use in computer simulations. The alterna- lon channels in biological membranes are formed by a
tive, analytical solutions of Poisson’s equation can begroup of four to five proteins, but their precise structure is

A. Model of ion channels
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' ' ' ' ' ' ' poles is used in all the simulations, giving rise to an attrac-

40 i tive potential for cations and a repulsive potential for anions
in the channel. These fixed charges represent the charged
20 I i side chains thought to form a ring around the entrance of the
= constricted regiofl1] and their nearby counter charges. For
% ol i convenience, we adjust the amount of charge rather than the
E number or positions of the charges, but in reality the side
20k i chains would have one electron charge each. The membrane
potential of 100 mV is represented by an applied electric
40l ] field of strength 16 V m~2. This is a simplification we use

for convenience. The actual potential and field across the
channel are severely distorted by the dielectric bounfi&ly
The treatment of water as a continuum is presumably a
reasonable approximation in the vestibule of the channel, but
FIG. 1. The model ion channel with two catenary vestibules islt IS nqt expe_cted to_ work in the narrow negk region. From
. the point of view of ion transport, the most important effect

generated by rotating the closed curves in the figure along the sym; . . . 5
metricz axis by 180°. The vestibules at each side of the membrarrl’rtlehat cannot be handled by the BD simulations is the dehy

are constructed using=a cosh (/a) with a=4.87 A. The radius dration process necessary for an ion to squeeze into the neck
of the entrance of the vestibule is 13 A and the cylindrical trans- €910N. The loss of water molecules from the first or second

membrane segment has a radius of 4 A. The dimensions of thgYdration shell of an ion will lead to an effective potential
cylindrical reservoirs are 30 A in radius and 22 A in height. barrier that the ion needs to surmount. This intuitive argu-
ment is supported by detailed MD studies of the gramicidin

not well known yet. Electron microscope pictures of the acePore, which reveal the presence of such an energy barrier at
tylcholine channel reveal a catenary shape narrowing dowfe pore moutfi3]. The temperature dependence of conduc-
to a 4-5 A radius in the neck regidd]. In modeling the tance measured in biological ion channels provides addi-
channel boundary, we follow this shape closedge Fig. L tional evidence for an energy barrier: The conductivity-
For purposes of simulation of ion transport, we place on eacfemperature curves in channels are always steeper than those
side of the vestibules a cylindrical reservoir with a radius ofin the bulk electrolyte solutions, which can be explained if
30 A and a variable height. The number of ions in eachone invokes a dynamic energy barrier in the neck region
reservoir is fixed for conveniendd3 of each specigsand ~ [12]. We model this effect in the BD simulations by erecting
the height of the reservoir is adjusted to obtain a desiredpotential barriers of heightg on either side of the channel at
ionic concentration. The ionic concentration in the volumez=*10 A. Only those ions that have thermal enerdies
composed of the channel vestibules and the reservoirs & Vg are allowed in, otherwise they are elastically scattered
300 mM, corresponding to a height of 22 A. This concen- from the barrier. The probability of transmission follows
tration is about twice that of the physiological concentrationfrom the Boltzmann distribution as

and is preferred in the simulations to obtain a better statistics.

1 I 1 1 1 1 1
60 -40 -20 0 20 40 60

zaxis (A)

The cylindrical reservoir has a glass boundary in that an ion 2 -
moving out of the boundary is reflected back into the reser- p(E>VB):_(kT)—3/2f e FKTE dE, (1)
voir. T Ve

An important question in the calculation of the electro-
magnetic forces is what dielectric constant to use for water
inside the channel. Molecular dynamics studies of water iV
cavities[9] and narrow porefl0] suggest that the dielectric

hich is given by the incompletE function

constant is substantially reduced compared to the bulk value. 2 3 2

This reduction ine,, clearly depends on the geometry, and in P(E>Vg)= _r(_,a) =—exp(—a) \/;

the absence of such a microscopic input for the catenary \/; 2 \/;

channel, we prefer to use the bulk value in the present simu-

lations. We note that a smaller value gf will lead to a 1 1 1

larger image force on an ion and therefore will require a X 1+Z—m+8—ag—~'), ()

larger dipole strength in the channel neck to cancel this re-
pulsive force and allow permeation of iofsee below

In earlier studies, charge groups in the protein walls argvhere o=V /kT. Ideally, this potential barrier should be
found to play an important role in ion permeation. To inves-calculated from the MD simulations and incorporated into
tigate such effects, we place a set of four dipoles inside théne BD algorithm. However, MD studies for general channel
protein boundary at=5 A and another set of four dipoles shapes are still in their infancy and it is not clear whether one
atz=—5 A. Their orientations are perpendicular to the can represent the complex interactions in the neck region
axis. For each dipole, the negative pole, placed at 1 A insidevith an effective potential acting on the ions only. In the
the water-protein boundary, is separated from the positivabsence of such information, we have used a step barrier for
pole by 5 A. Thus, if 5/16 of an elementary charge is placedsimplicity, but caution that a description of properties such
on each pole, then the total moments of four such dipoless selectivity may ultimately require switching from BD to
would be 10x 107 3%° C m. The same configuration of di- MD in the vicinity of the neck region.
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B. Brownian dynamics The BD program used in the simulations is written in

The trajectories of ions drifting across the channel undeFORTRAN, vectorized, and executed on a supercomputer
the influence of a driving force are followed using BD simu- (Fujitsu VPP-300. A typical simulation is run for 2000 000

lations. The motion of theth ion with massn; and chargey;  Steps, which is repeated 5 times. With 52 ions in the reser-
is governed by the Langevin equation voirs, the CPU time of a supercomputer needed to complete

one simulation period of 0.1us (1& time steps in 100 fs

is about 2 h. The current is determined from the total number
&) of ions crossing the transmembrane segment. To ensure that

the desired intracellular and extracellular ion concentrations
are maintained throughout the simulation, a stochastic
boundary is applied. When an ion crosses the transmembrane
segment, an ion of the same species from the same side is
transplanted on the opposite side.

dv,
m; d_tl = — MYV + FR(t)+ Fi .

The first term on the right-hand side of E®) corresponds
to an average frictional force with the friction coefficient

given bym;y;, where 1#; is the relaxation time constant of . ; .
the system. The second terfRx(t) represents the random . The .f°”°_W'”9 phy§|cal constants are employed in thg BD
simulations: dielectric constantg,e~80 and epo=2;

part of the collisions and rapidly fluctuates around a zero o 26 ale "o Prot o
mean. The frictional and random forces in E8), together ~ Ma55€3Ma™ 3.8x10 Eg andmCL—gS.QZX 1_01 kg; dif-
describing the effects of collisions with the surrounding Wa_fgsmn Co?gf'c'%”t§ 1'_3 Na— 133107 m" s a[]? De
ter molecules, are connected through the fluctuation—:2'03><%)103 _T S relixatlon glrge _cgns_tants > YNa
dissipation theorenfl3], which relates the friction coeffi- =8.1x10" 57 and yg=3.4x10™ s7% ion radii Iy,

cient to the autocorrelation function of the random force fg'9985 }f‘ and rg=1.81 A; and room temperaturd,

1 o0
m ViZMJ7m<FRu(O)FRu(t)>dt’ u=xyz (4 C. Lookup tables for electric forces

The BD algorithm requires calculation of electric forces

wherek and T are the Boltzmann constant and temperatureacung on ions at each time step. Given the positions of ions,

in degrees Kelvin, respectively. Here the angular bracketghIS can be achieved by solving PO'SSONS. equatlon in an
denote ensemble averages. Finally=gE; in Eq. (3) de- appropriate boundary. However, as emphasized in the Intro-

notes the total electric force acting on the ion. The electricd.UCt'on’ this direct approach is computationally too expen-

field E; arises from(i) other ions, (i) fixed charges in the sive to be useful in long-time simulations necessary for the

o . . calculation of conductance. Here we adapt an alternative
protein, (i) membrane potential, anlv) induced surface method where the electric field and potential are precalcu-

charges on the water-protein boundary. It is computed bB(ated on a grid of points for various configurations and the
solving Poisson’s equation and will be further discussed in 9 P 9

Sec. |1 C. results are stored in a number of lookup tables. During simu-

. . L lations, the field and potential at desired points are recon-
The solution of the Langevin equation is implemented ' . ! ;
using the third-order BD algorithm proposed by van Gun_structed by interpolating between the table entries. Com-

. : pared to the analytical solution of Poisson’s equation in
steren and Berends¢ha,19. The main steps of the solution toroidal coordinates, the lookup method is two orders of

nee_ded in this |mplementat!0n are given in the App?ndlx'magnitude faster. The lookup method has the additional ad-
Unlike many other BD algorithms, the time stefes in this . X ;
vantage that one is not restricted to a toroidal channel. Nu-

algorithm are not restricted by the conditisrt<y~ . For ) . ; ) . -
merical solutions of Poisson’s equation for more realistic

typical ions(Na or K), this condition would have required . ;
At~1 fs, thus making the long-time simulations needed tochannel shapege.g., catenajycan be as easily stored in

] . : ; . tables as is done in the present work.
obtain the macroscopic current virtually impossible. The E . o .

. : . or calculational purposes, it is convenient to break the
physical constraints of the ion channel, on the other hanq’otal electric potentiaV; experienced by an ion into four
impose a much more relaxed time step. For example, keep-. P i EXp Y
ing the rate of change of the electric field in the channel to &'6Ces
few percent requiredat=100 fs, which is used in the fol-
lowing BD simulations. The basic computational steps of the
algorithm are as follows. Vi:VS,i+VX,i+;i Viii +; Ve,ij s 6)

(i) Compute the electric forcE(t,) =q;E; acting on the
ion i at timet, from the lookup table and calculate its de-
rivative [ F(t,,) —F(t,_1) ]/At.

(if) Compute a net stochastic force impinging on an ionwhere Vg, is the self-potential due to the surface charges
over the time period oAt from a sampled value dFg(t). induced by the iori on the channel boundary aMy; is the

(iii) Determine the position of each ion at timer At and  external potential due to the applied field, fixed charges in
its velocity at timet, by substitutingF(t,), its derivative  the protein wall, and charges induced by these. The next two
F(t,), andFg(t) into the solutions of the Langevin equation, terms in Eq(5) take the influence of other ions into account,
Egs.(A6) and (A7). namely,V, j; is the image potential due to the charges in-

(iv) Repeat the above steps for all ions in the system for @luced by the ion) andV¢ j; is the Coulomb potential due to
desired number of simulation steps. the ionj, which is computed directly from
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1 aj combined and stored in the same table. However, separate
i — (6)  tables are more flexible and assist in minimizing the interpo-
lation error, and therefore preferred.

During the simulations, first the positions of ions at a
wherer; andr; are the positions of the ions. The electric given time step are converted to the generalized coordinates.
field experienced by the ion is decomposed in the same wayhe values of the electric potential and field at the position of

the ion are then extracted from the tables by multidimen-
sional linear interpolation, making use of a simple algorithm
Ei=Es;i+Ex;t+ 2 Eiijt+ 2 Ec,ij » (7)  that generalizes easily to dimensions greater thEl6R Be-
J# 1#1 cause the grid points are evenly spaced in the generalized
coordinates, the appropriate indices can be found by division
each field component being defined as in the potefial rather than by a time consuming binary search. For an ion

The first three components in E4S) and(7) depend on  With chargeq; at the positiorr; =(p;,{; , 6;) and another ion
the boundary and, in general, they are determined from nuwith chargeq; atr;=(p;,{;,6;), the potentials are given by
merical solutions of Poisson’s equati¢see Refs[5,6] for
iterative techniques of solutignEach of these components is Vv -—&V o
calculated for a grid of positions and stored in separate SiTe 20(pi+&i),
tables. To allow rapid look up, the precalculated values must
be on an evenly spaced grid. Because the use of a rectilinear Vy.i=Vap(pi i, 0:), (10
grid would result in many wasted points and a jagged edge
near the pore boundary, we use a system of generalized cy- J.
lindrical coordinates in constructing the look up tables. In V|,ij:gV50(Pi Lipyhdu16i—65)),
terms of the cylindrical coordinates,(,2)

\él/Vh|e0re $/|2)D(pl vgi)bv V3D(§pt; vgi !eil) ! a?]d ) VSD(pII vg_i vp] 1|
— 212 a1 _ i,|6;— 0;]) are obtained by applying the interpolation algo-
=Y o=y, 2=z, ® rithm to the two-dimensional self-potential table, the three-
dimensional external potential table, and the five-
the generalized coordinatep,§,{) are defined as dimensional image potential table, respectively. The self-
potential and image potential tables are constructed assuming
p(r,2)=1Tmaf2), 0=0, (2)=(2—Zumin) (Zmax—Zmin), & POSItive unit charge as the source, so the results are res-
caled to the actual source charge after lookup.
©) The symmetries used to reduce the size of the tables re-
) Lo , quire that the recovered electric field be rotated and reflected
wherer n,(2) is the limiting radius of the pore anghaand  gnnropriately so that it corresponds to the simulation’s Car-

Zpip are the maximum and minimum coordinates for the  tesjan axes. The fields are extracted from the interpolated
system. The coordinatesand p are normalized and cover ispje values as

the rangd 0,1]. For 6, we use the range— m, 7] for con-

venience(see below. The limiting radiusr ,,5(2) is offset ai
from the pore wall by the radius of the smallest ion in the Esi=— Re(0)Ean(pi i),
simulation, which defines the closest possible approach for
an ion to the pore wall. Besides providing a smooth edge
b P 9 9 Exi=Esp(pi, i, 0), (11)

near the boundary, the generalized coordinates also allow the

cylindrical symmetry of the channel to be exploited. For ex-

ample, thed coordinate is redundant in the calculation of the Eyij =$Ry( 6;,6,)RA6)Esp(pi &i 1pi & 6i— 6]),

self-potentiaVg; , therefore it is stored in a two-dimensional €

table Vop(pm,¢n). Similarly, the image potentiaV/, ;; de- ) ) )

pends on the relative angle between the ibasdj and itis ~ WhereR,(#;) denotes the rotation matrix around theaxis

stored in a five-dimensional tabMsp(pm, &P »Enr + 04)- by an angleai_ andR(6;,0;) is a reflection operator on the

Due to reflection symmetryg, and — 6, lead to the same X-Z plane defined by

image potential. Hence, in Vsp covers only the range )

[0,77]. The fixed charges do not possess any particular sym- R0 ,0,)= D(1,1,1) if m>6;—6;>0 (12

metry, so the external potentisll ; is stored in a full three- ol D(1,-1,1) if 0>6,—6,;>—.

dimensional tablé&/s5(pm . {n, 0k) - Here 6, covers the whole

range[ — ,]. HereD denotes a diagonal matrix with entries as indicated in
The electric field is stored in the same way as the potenthe arguments.

tial, except that three values are required for each point in a Once the field and potential are known, the force and

table, one for each Cartesian component of the field. Spotential energy on ioi can be calculated from

while the field tables are indexed by the generalized coordi-

nates, their contents are stored as Cartesian coordinates in the Fi=qiE, (13

tables E2D(va§n)a E3D(pm1gn!0k)1 and E5D(pm1§nv 1
pm ¢ 0. Note that, in principle, these results could be Ui=qi(Vi—zVs;). (14



3658 MATTHEW HOYLES, SERDAR KUYUCAK, AND SHIN-HO CHUNG PRE 58

Note that only half the self-potential is used when calculating [ ]
the potential energy. The reason for this can be seen by 20 | -
imagining the charge on the ion being built up with infini- i \J

tesimal pieces being brought in from infinity. While the ex- :

ternal potential remains the same during this process, the
self-potential increases from zero to its full value as the
charge is built up. This involves the integr&g'q dq
=qi2/2, which explains the factor of one-half.

To test the accuracy of the lookup method, we compare
the interpolation results for potential energy and force with
those obtained from the analytical solution of Poisson’s
equation for a toroidal channel in a variety of situations. The L
channel boundary is generated by rotating a circle inxtae -50 -40 -30 -20 -10
plane around the axis. The radius of the circle is 40 A and Distance (A)
its center is located at=44 A, z=0. We refer to Ref[7] r ]
for details of the analytical solution. The results of electric 12 - .
potential and each Cartesian component of the field for the - 1
self-, external, and image parts are stored in tables with di-
mensions 3X97, 1017140, and 7X119x7Xx119
X 14, respectively. These dimensions are found after an op-
timization of the lookup program for the toroidal channel.
The catenary channel described in Fig. 1 has a similar shape
and lookup tables with the same dimensions are used in the
BD simulations in Sec. Ill.

Among the three potentialor field) parts, the self- I ]
potential displays larger errors compared to the image and ol i
external potentials. Therefore, in the following tests, we fo- R Y R S S
cus on the potential energy and the force on a single ion in a
toroidal channel that has no other fixed charges or external Distance (A)
fields. In Fig. 2 we show the potential energy and the
component of the force for a single ion moving parallel to  FIG. 2. Comparison of the potential energy andzte®mponent
the central axis but offset from it by 3 A. Since thecom-  of force, obtained from the lookup tables by interpolatioircles),
ponent of the force provides the driving force in the BD With the analytical solutionglines) for a toroidal channel. An ion is
simulations, only that one is shown in this figure. The soligmoved anng the trajector'y that is parallel to the f:entral_ axis but is
lines are calculated from the analytical method and the?ffset from it by 3 A, as indicated by the arrow in the inset. The
circles by interpolating from the precalculated values stored®Sition of each circle in the direction is located at the midpoint
in the lookup tables. The spacing between points in thé)etween two adjacent points stored in the lookup table.
lookup table is 1.77 A in the direction and the circles are
at the midpoints of these intervals, where the maximum in-
terpolation error is expected to occur. The radius of the charforce for points near the boundary in Fig. 4. The agreement
nel varies withz and hence the spacing between points in thebetween the analytic and lookup methods evident in Figs.
r direction changes. Therefore, the circles are not necessari~4 indicates that the interpolation error is negligible for the
located at the midpoints of the interpolation intervals in thepotential energy and the force in the most important parts of
radial direction. The relative error for the potential and forcethe channel.
are not shown in a separate graph because they are less thanTests carried out on a catenary channel yield a similar
1% for all the points in Fig. 2. Almost identical results are agreement between the lookup method and the numerical
obtained for other ion trajectories parallel to the central axissolution results. The relative error is slightly larger when an
but with different radial offsets. In Fig. 3 we show a similar ion approaches the vestibular wall in the catenary channel,
plot of the potential energy and the radial component of thebut this is not of great concern in simulations since ions tend
force in thez=0 plane as the ion is moved radially from the to stay away from the water-protein boundary.
central axis towards the boundary. Note that the closest ap- The system of generalized coordinates we use has a weak-
proach is limited by the size of the ion. Here the circlesness at the entrance to the pore, where the boundary runs
correspond to the midpoints of the interpolation intervals inhorizontally, perpendicular to theaxis. The radius suddenly
both thez and the radial directions. The relative error is jumps from that of the reservoir to that of the pore entrance.
again less than 1% for all the points in Fig. 3. In Fig. 4 weThis results in spurious interpolation between points near the
show another comparison for the potential energy and thehannel's top surface and points in the pore entrance. Errors
radial component of the force on a radial trajectory in the in the potential near the channel’s top surface are unlikely to
=30 A plane. Again the circles are chosen at the midpointsffect the results of simulations. Errors in the potential in the
of the interpolation intervals. The relative error remains lesgore entrance are of greater concern. However, the magni-
than 1% for the potential, but rises to a few percent for theude of the force is rather small in this region and we have
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FIG. 3. Same as Fig. 2, but for a radial trajectory in #we0 FIG. 4. Same as Fig. 3 but for a radial trajectory in the

plane and the radial component of the force. The lookup results-309 A plane(see the inset
(circles are calculated at the midpoints of the interpolation inter-

vals in both thez and the radial directions. geometry, they can be used in many simulations studying

checked in control runs that it has no effect on the simuladifferent aspects of channel conductance.

tions. An improved system of generalized coordinates that
a\{oids this problem may be desirable in other applications of 1. BROWNIAN DYNAMICS SIMULATIONS
this method. , , , OF CONDUCTANCE

The use of lookup tables is practical despite the large
number of points at which the field needs to be calculated Previously, we used the BD simulations to study trajecto-
because the time used by the algorithms depends much mories of ions in a toroidal channé8]. The main conclusions
on the number of solutions needed rather than the number of that work are(i) the repulsive self-potential of an ion is
points per solution. Both the iterative and analytical algo-strong enough to make the channel impermeable even in the
rithms can easily generate the field at multiple points arisingoresence of an applied electric potential of 100 mV &nd
from many charges at given positiofwhich we call one dipoles of a favorable orientation are required to cancel this
solution. On the VPP, a solution for 50 ions and 16 fixed repulsive force and make the channel permeable. The use of
charges takes 0.3 @f CPU tim@ by the analytical algo- lookup tables allows much longer simulation times, which
rithm, 6 s by theiterative algorithm, but only 0.005 s by the we exploit here to study the conductance of the model cat-
lookup table method. A BD simulation of 210° steps enary channel described in Sec. Il A. In particular, we con-
would thus takgincluding overheadsl70 h by the analyti- sider the effect of the potential barrier on the channel con-
cal algorithm, 140 d by the iterative methoddafh h by the ductance. In Fig. 5 we show the current-voltage relationship
lookup table method. The filling of the tables takes only 1 hobtained in five different simulations as the barrier height
using the analytical solution and 10 h using the iterativetakes the value¥z=0, 3, 4, 5, and 6kT,. The results for
solution. To give an example, generating a five-dimensional/g=1 and 2 kT, are not shown to avoid cluttering KT,
lookup table using the iterative methdahich is the most overlaps with OKkT, and 2 kT, is slightly suppressed with
time consuminyg requires only 833 solutions, each for a respect to OkT, but retains its linear characjerThe out-
single ion and at 12 000 points. Each solution takes 21 s anstanding feature of these curves is the increasing deviation
the total time required is about 5 h. Another advantage of thérom the linear Ohm'’s law as the barrier height increases.
method is that once the tables are constructed for a givelihe curvature mostly occurs in the regieiv~Vg and one
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example, the rapid change implies a faster suppression
of the current with increasing barrier than envisioned in Eq.
(15). We have not attempted a global fit of the data since it
appears unlikely that the complexities of the BD simulations
could be summarized in a simple, single formula.

For symmetrical solutions, the current-voltage relation-
ship obtained from patch-clamp recordings is usually Ohmic.
(Here we are not concerned with nonlinearities that arise
from rectification) These measurements are typically carried
out with the applied voltage in the biological range 0—100
mV. The BD simulations presented above suggest that the
current-voltage relations would deviate from straight lines if
there are potential barriers in the channel, but the deviation
would be apparent only at higher values of the applied volt-
age (100200 mV. There are already some experimental
indications for a deviation from Ohm'’s laj8]. It would be
worthwhile to pursue this question further in future patch-
clamp experiments where the applied voltage is pushed be-
yond the usual range. If such deviations do occur, fitting the
data points with Eq(15) will provide an estimate of the
barrier height present in the channel.

Current (pA)

Voltage (mV)

FIG. 5. Evolution of the current-voltage relationships with the IV. CONCLUSIONS
barrier height for symmetrical solutions. Current flowing across the

channel is measured at different applied potentials. The data points Electric forces play an important role in ion transport
are fitted with a modified Ohm law, which takes the barrier into across membrane channels and therefore they form an essen-

accountsee Eq(15)]. tial part of any model channel. In this paper we proposed a
lookup method for calculation of electric forces, which en-

recovers the linear-V curves at the asymptotic regions al- ablgs computer_simL_JIation studies (_)f ion c_onductance to be
beit with different conductances. Intuitively, the relative sup-CarTied out for biological channels with vestibular shapes. As
pression of the current at low voltages follows from the factdémonstrated in Sec. II, the method is fast, accurate, and
that the potential barrier is most effective when the driving/l0Ws arbitrary shapes of channels. As an application of the

force is small. These observations suggest a modification dfi€thod, we have performed Brownian dynamics simulations

Ohm's law with a Pschl-Teller function17] of ion conductance in a model catenary channel. The results
highlight the role played by potential barriers in channel dy-
W namics and how they could explain deviations in current-
I= 1+ Bicosh(eViVy) ' (15  voltage relations from Ohm’s law. Conversely, the observa-

tion of nonlinearities in patch-clamp experiments would shed
wherey is the limiting conductance an@lis a dimensionless light on the presence and nature of potential barriers in bio-
constant. Whee V> Vg, the denominator goes to 1 and one logical channels. Such effects should be actively pursued in
recovers Ohm’s law. FoeV<Vg, Eq. (15) is again linear future patch-clamp experiments where the applied voltage is
but with a conductance reduced #8(1+ 3.) The nonlin- Pushed beyond the usual biological range.
earities in thel-V curves become apparent only wheW
~Vpg, which corresponds to the regidri=100—-200 mV APPENDIX: SOLUTION OF LANGEVIN EQUATION
for the above barriers. The lines in Fig. 5 are obtained by

fitting Eq. (15) to thel-V data. The fit values of the param- . . h imol d in th lgorithm of
etersy and B are given in Table |. While Eq(15) does a vin equation that gre |mpdemente n the BhD algorithm ©
good job of describing the data for a given barrier, variation}laacrlocsg?tsﬁeenLZQ e?/ﬁ:in uﬁg@?igﬁ lgeeirtns 'rn;; %r?:'o”n‘-?’]
of the fit parameters wit'g indicates that it is too simplistic ’ 9 9 9

to give a consistent picture for all the data in Fig. 5. For®" initial timet, to t to obtain for the velocity

Here we give the basic steps in the solution of the Lange-

TABLE I. Values of the parameterg and 8 in Eq. (15) ob- v(t) e”—u(t,) ern= ift[F(t’)+FR(t’)] e'dt’.
tained from fits to theé-V data in Fig. 5. mJt,
(A1)
Ve(kTd v P9 A Here and in the following the indices referring to ions and
0 232+4 Cartesian components are omitted for convenience. The in-
3 159+4 0.63+0.18 tegral over the random force in E¢ALl) can be obtained
4 151+7 2.44+0.41 using the stochastic properties &fz(t). For the electric
5 130+ 11 3.74-0.68 force, we Taylor expané(t) aroundt,,,
6 138+ 80 9.12+7.02

F(t)=F(t)) +F(t)(t—t)+ -, (A2)
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whereF(t,) denotes the derivativE(t) att=t,. Here the _ v(t,) _,., F(ty) .
first-order expansion df(t) is sufficient as the positions in ~ X(tn+1) =X(tn) + (1-e D+ my? (r—1+e’")
the BD algorithm are exact to third order. Substituting Eq.

. . . . : 5
(A2) in Eq. (A1) and integrating the force terms gives F(tn)(r__ r+1—e | £ X,(A). (A5)
F(ty) my*\ 2
v(t)=v(t,) e 74— (1—e vt
my Here 7= yAt is a dimensionless parameter that signifies a
. diffusive regime whenr>1 or a microscopic one when
+ F(t")[y(t_t )—1+e 7t <1. A more convenient form fok(t,, ), which does not
my? " involve the velocity, can be obtained by addiag” times
. X(ty_1)=x(t,—At) to Eq. (A5),
+—— | Fr(t’) e”dt’. (A3) F(t,)
tn X(tys 1) =X(tn) (1+€7) =X(ty- )€™ "+ T r(1-e7)

To find the position after a time stext, we need to integrate

Eqg. (A3) once more front, to t,+ At. Integration of all the I':(tn) 7 . .
terms in Eq.(A3) is straightforward, except the last one, + oy S (1+e ) —r(l-e )|+ X,(AD
which can be done by parts usimiu=e~ " andv as the
integral of Fg, - X (—At)e™". (AB)
tatAte”™ M (it , e Similarly, a simple expression for the velocity follows by
ft m ), Fr ) &7 dt subtractingx(t,_,) from Eq. (A5),
1 [ty+at 2y F(tn) F(tn)
— t—t,—At - = — - _ —
“myl. [1—e NFR(DAt=X(A), (A4) v(t) = gp 7| X(tnea) =X(th-1) +2 rves -~

where we have defined the random variaKjg¢At), which
has the same stochastic propertie§a&). We refer to Ref.
[15] for details of howX,(At) is implemented in the BD
algorithm. Using Eq.(A4), the position at timet,,,,=t, Equations(A6) and (A7) provide the basic input for the BD
+ At is found to be algorithm used in the simulations.

X(sinh 7= 7) = Xn(At) + X, (— At) | (A7)
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